From 9538a2446975dc265ac72ed7c895271034e2cb49 Mon Sep 17 00:00:00 2001 From: Johannes Loher Date: Tue, 8 Aug 2017 17:20:30 +0200 Subject: [PATCH] =?UTF-8?q?Berechnung=20Koszul-Komplex=20hinzugef=C3=BCgt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- chapters/chapter3.tex | 39 ++++++++++++++++++++++++++++++++++----- custom_commands.tex | 2 +- 2 files changed, 35 insertions(+), 6 deletions(-) diff --git a/chapters/chapter3.tex b/chapters/chapter3.tex index 5f01e9b..a78dd32 100644 --- a/chapters/chapter3.tex +++ b/chapters/chapter3.tex @@ -49,14 +49,43 @@ Im Folgenden sei $A$ ein kommutativer Ring. Sei $\bmx = (x_1,\ldots,x_r)$ eine Familie von Elementen aus $A$. Mit $K(\bmx)$ oder auch mit $K(x_1,\ldots,x_r)$ bezeichnen wir folgenden Tensorprodukt -Komplex: \begin{equation*} K(\bmx) = K(x_1)\otimes_A K(x_2) \otimes_A \cdots \otimes_A K(x_r) - \end{equation*} - $K_p(\bmx)$ ist der freie $A$-Modul, der von den Elementen der Form + \end{equation*} +\end{defn} + +\begin{lem} + \label{lem:koszul-komplex-berechnung} + Sei $\bmx = (x_1,\ldots,x_r)$ eine Familie von Elementen aus $A$. Dann ist $K_p(\bmx)$ der freie $A$-Modul, der von den Elementen der Form \begin{equation*} - e_{x_{i_1}}\wedge \cdots \wedge e_{x_{i_p}} = 1 \otimes \cdots \otimes 1 \otimes e_{x_{i_1}}\otimes \cdots \otimes e_{x_{i_p}} \otimes 1 \otimes \cdots \otimes 1 \qquad i_1 < i_2 < \cdots < i_p + e_{x_{i_1}}\wedge \cdots \wedge e_{x_{i_p}} = e_{x_{i_1}}\otimes \cdots \otimes e_{x_{i_p}} \otimes \underbrace{1 \otimes \cdots \otimes 1}_{(r - p)\text{-mal}} \qquad 1 \le i_1 < i_2 < \cdots < i_p \le r \end{equation*} erzeugt wird. Insbesondere gilt also \begin{equation*} K_p(\bmx) \cong \bigwedge\nolimits^p(A^r). - \end{equation*} + \end{equation*} + \begin{proof} + Für $p\in \Z$ sei $I_p^r = \{\bmi \subset \{1,\ldots,r\} \mid \#\bmi = p\}$. Wir haben folgendes zu zeigen: + \begin{equation*} + K_p(\bmx) = \bigoplus_{\bmi \in I_p^r}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right) + \end{equation*} + Dies beweisen wir durch Induktion über $r$. Im Fall $r = 1$ gilt $I_0^1 = \{\emptyset\}$, $I_1^1 = \{\{1\}\}$ und für $p\notin \{0, 1\}$ gilt $I_p^1 = \emptyset$. Damit folgt: + \begin{align*} + K_0(\bmx) &= K_0(x_1) = \bigoplus_{\bmi \in I_0^1}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right)\\ + K_1(\bmx) &= K_1(x_1) = \bigoplus_{\bmi \in I_1^1}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right)\\ + K_p(\bmx) &= K_p(x_1) = 0 = \bigoplus_{\bmi \in I_p^1}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right) \qquad \text{für }p \notin \{0, 1\} + \end{align*} + Sei also nun $r > 1$ und die Behauptung für alle $s\in \N$ mit $0 \le s < r$ bereits bewiesen. Sei außerdem $\bmx' = (x_1,\ldots,x_{r-1})$. Dann gilt: + \begin{align*} + K_p(\bmx) &= \bigoplus_{i + j = p} K_i(\bmx') \otimes_A K_j(x_r)\\ + &= \bigoplus_{j \in \{0,1\}} K_{p - j}(\bmx') \otimes_A K_j(x_r)\\ + &= \quad\phantom{\oplus}\bigoplus_{\bmi \in I_p^{r - 1}}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r - 1\} \setminus \bmi}K_0(x_i)\right)\right) \otimes_A K_0(x_r)\\ + &\phantom{=}\quad \oplus \bigoplus_{\bmi \in I_{p - 1}^{r - 1}}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r - 1\} \setminus \bmi}K_0(x_i)\right)\right) \otimes_A K_1(x_r)\\ + &= \quad\phantom{\oplus}\bigoplus_{\bmi \in I_p^{r - 1}}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right)\\ + &\phantom{=}\quad \oplus \bigoplus_{\bmi \in I_{p - 1}^{r - 1}}\left( \left(\bigotimes_{i \in \bmi \cup \{r\}}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus (\bmi \cup \{r\})}K_0(x_i)\right)\right)\\ + &= \quad \phantom{\oplus} \bigoplus_{\substack{\bmi \in I_{p}^{r}\\r \notin \bmi}}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right)\\ + &\phantom{=}\quad \oplus \bigoplus_{\substack{\bmi \in I_{p}^{r}\\r \in \bmi}}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right)\\ + &= \bigoplus_{\substack{\bmi \in I_{p}^{r}\\r \in \bmi}}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right)\\ + &= \bigoplus_{\bmi \in I_p}\left( \left(\bigotimes_{i \in \bmi}K_1(x_i)\right) \otimes_A \left(\bigotimes_{i \in \{1, \ldots, r\} \setminus \bmi}K_0(x_i)\right)\right) + \end{align*} + \end{proof} +\end{lem} Ist $M$ ein $A$-Modul, so bezeichnen wir den Tensorprodukt-Komplex $K(\bmx)\otimes_A M$ mit $K(\bmx,M)$ oder auch $K(x_1,\ldots,x_r;M)$. -\end{defn} diff --git a/custom_commands.tex b/custom_commands.tex index afe82d0..3978ccf 100644 --- a/custom_commands.tex +++ b/custom_commands.tex @@ -11,7 +11,7 @@ \newcommand{\mfp}{\mathfrak{p}} \newcommand{\mfq}{\mathfrak{q}} - +\newcommand{\bmi}{\bm{i}} \newcommand{\bmx}{\bm{x}} \DeclareMathOperator{\Ann}{Ann}