wtfunctional/tex/wtfunctional.tex

220 lines
6.7 KiB
TeX
Raw Normal View History

\documentclass[english]{beamer}
\usepackage{babel}
\usepackage{csquotes}
\usepackage{tabularx}
\usepackage[backend=biber, style=numeric,]{biblatex}
\bibliography{wtf}
\usepackage{fontspec}
\setsansfont{Fira Sans}
\setmonofont{Inconsolata-g}
\usetheme{Antibes}
%\usecolortheme{beaver}
\setbeamercovered{transparent}
\title{WTFunctional}
\author{Oliver Rümpelein}
\subtitle{Using functional structures in non-functional languages}
\input{headers/listings}
\begin{document}
\frame{\titlepage}
\section{Dafunc?}
\subsection{Functional programming}
\begin{frame}{Understanding functional paradigms}
Here: so called \enquote{purely functional} paradigm.
\begin{itemize}
\item<+-> Programming without \enquote{side-effects}
\begin{itemize}
\item<+-> No mutability
\item<+-> Functions work only in local context
\end{itemize}
\item<+-> Extensive use of lists and so called maps/reduces (later)
\item<+-> Do not mix up with \enquote{procedural} programming (using only functions)!
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Example}
%ToDo: C-code call by value, call by reference.
\begin{cppcode}
int f(int x) { return ++x;}
int g(int& x) { return ++x;}
int main() {
int x = 2;
f(x);
assert(x==2); // f is “functional”
g(x);
assert(x!=2); // g is not!
}
\end{cppcode}
\end{frame}
\begin{frame}{Pros and Cons}
Pros:
\begin{itemize}[<+->]
\item Maintainability
\item Testing
\item (often) shorter code
\end{itemize}
Cons:
\begin{itemize}[<+->]
\item harder to learn
\item harder to understand
\item slower due to abstraction
\end{itemize}
\end{frame}
\subsection{Case study: Haskell}
\begin{frame}{Overview}
\begin{itemize}[<+->]
\item \emph{Haskell} is a purely functional, compiled programming language
developed since 1990.
\item It is typed and has a strong meta-type system (comparable to
interfaces in OOP)
\item The most important implementation is \emph{GHC} (Glasgow Haskell
Compiler)
\item Haskell is lazy. Statements get evaluated only when needed, if ever.
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Syntax Functions}
Function constraints, definition and calls:
\begin{haskell}
mysum :: Num a => a -> a -> a -> a
mysum x y z = x + y + z
-- b == 6
b = mysum 1 2 3
\end{haskell}
\pause
Functions always get evaluated left to right, thus the following works (\emph{Currying}):
\begin{haskell}
mysum2 = mysum 2
-- c == 12
c = mysum2 4 6
\end{haskell}
\end{frame}
\begin{frame}[fragile]{Syntax Lists (1)}
\begin{itemize}[<+->]
\item Lists in Haskell can only hold data of one type. They are defined using
\haskellcmd{a = [1,2,3,4]} or similar.
\item An automatic range can be obtained by using \haskellcmd{b = [1..4]},
where the last number is inclusive.
\item If possible, Haskell will try to inhibit the step
automatically. \haskellcmd{c = [1,3..7]} yields
\haskellcmd{[1,3,5,7]}.
\item When leaving out the end specifier, a range can be infinite. In this case,
it's up to the programmer to constrain things.
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Syntax Lists (2)}
\begin{itemize}[<+->]
\item Two lists can be concatenated using the \haskellcmd{++} operator:
\haskellcmd{[1,2,3] ++ [4..7]}
\item Single objects get pushed to the front using
\enquote{\haskellcmd{:}}: \haskellcmd{1:[2..7]}.
\item This can also be used vice versa to extract single values from lists:
\begin{haskell}
extract (x:xs) = x
-- a = 1
a = extract [1..5]
\end{haskell}
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Syntax Recursion}
Example: Add a value to every entry in an array
\begin{haskell}
addto :: (Num a) => [a] -> a -> [a]
addto [] _ = [] -- edge case (list empty)
addto (x:xs) y = (x+y) : addto xs y
b = [1..4]
-- c == [5,6,7,8]
c = addto b 4
\end{haskell}
\end{frame}
\begin{frame}[fragile]{Lambdas}
\begin{itemize}[<+->]
\item By now: lambda-functions well known from other programming languages
\item Represent \enquote{anonymous} functions, i.e. locally defined functions
without associated name
\item Can simply be passed to algorithms, i.e. sort.
\item Syntax: \haskellcmd{\var1 var2 -> retval}
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Maps, Filters}
\begin{itemize}[<+->]
\item A \emph{Map} applies a function to all elements of a list:
\haskellcmd{map (^2) c}\quad (square the elements of c)
\item A \emph{Filter} does exactly that to a list:
\haskellcmd{filter (\x -> (mod x 2) == 0) c} \quad (even numbers in c,
filtering done using a lambda function)
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Folds (1)}
\begin{itemize}[<+->]
\item \emph{Folds} (or sometimes \emph{reductions}) create single values
using whole lists, i.e. sums over all elements
\item Often implemented using recursion
\item Need a function, an initialization value and a list
\end{itemize}
\end{frame}
\begin{frame}[fragile]{Folds (2)}
\uncover<+-> Example: Self written Right fold and sum:
\begin{haskell}
mfold f z [] = z
mfold f z (x:xs) = f x (mfold f z xs)
msum = mfold (+) 0
-- g == 5050
g = msum [1..100]
\end{haskell}
\uncover<+->{Note that this gets pretty resource hungry with large
lists, better use left-folds for this (see~\cite{whichfold})}
\end{frame}
\begin{frame}[fragile]{Example: Pythagorean triangles}
Get all Pythagorean triangles with a hypotenuse off length at most 15:
\begin{haskell}
> [(a,b,c) | a <- [1..15],
b <- [1..a],
c <- [1..b],
a^2 == b^2 + c^2]
[(5,4,3),(10,8,6),(13,12,5),(15,12,9)]
\end{haskell}
\end{frame}
\begin{frame}[fragile]{Example: Bubble-sort}
Recursive, functional bubble-sort algorithm:
\begin{haskell}
bsort f [] = []
bsort f (x:xs) = (bsort f a) ++ [x] ++ (bsort f b)
where a = [ y | y <- xs, not (f x y) ]
b = [ y | y <- xs, (f x y) ]
mbsort = bsort (\x y -> (x > y))
\end{haskell}
\pause Result:
\begin{haskell}
λ> h = [1, 20, -10, 5]
λ> mbsort h
[-10,1,5,29]
\end{haskell}
\end{frame}
\begin{frame}[plain]{References}
\printbibliography
\end{frame}
\end{document}
%%% Local Variables:
%%% mode: latex
%%% ispell-dictionary: en
%%% End: